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• Lattice QCD and MCMC

• HMC

• New multigrid methods for chiral fermions



Monte Carlo Integration

• Integration ∫
U

f (U)dU = Vol×〈f 〉 ; Vol =
∫

U
dU

• Monte Carlo Integration (xi uniform over compact domain)

〈f 〉=
1

N ∑
i

f (xi )

• Importance sampling: draw xi with positive normalised probability density P(xi )

〈f 〉=
1

N ∑
i

f (xi )

P(xi )

• If |f (xi )| ∝ P(xi ) this may converge better.
NB: analogy to removing bias from fixing machine learned MC integrators

• Variance reduction: if f̃ is a good, cheap approximation for f

〈f 〉=
1

N ∑
i

f̃ (xi )

P(xi )
+

1

N×M ∑
j

f (xj )− f̃ (xj )

P(xj )



Euclidean Path Integral

• Pure gauge path integral
1

Z

∫
U

e−SG [U]O(U)dU

• Importance sample: seek to distribute gluon configuratoins according to

P(U) =
e−SG [U]∫

U e−SG [U]dU

• Calculate observables on each configuration

〈O〉=
1

N ∑
i

O(Ui )

• ⇒ Markov chain monte carlo:

• 1010 degrees of freedom(!)
• Sharply probability weight
• Variance of O(U) determines how many samples are required.
• 100-2000 samples typically good for 1% scale statistical errors

• This is observable dependent...



Markov chains

• Sequence of states generated by transition probability M(X → X ′) from X to X ′

Rule depends only on X .

• Usually composed of proposal and acceptance probablities

M(X → X ′) = Pp(X → X ′)Pacc (X → X ′)

• Design rule M(X → X ′) to yield desired equilibrium probability distribution after many
transitionsPeq(X )

• Peq must map to itself under of the transition rule:

Peq(X ′) = ∑
X

Peq(X )M(X → X ′)

• An ergodic update satisfying this and is a contration mapping and Markov transitions
converge on the desired equilibrium.

(Clear pedagogical review: Anthony Kennedy Nara lectures 2006)



Metropolis algorithms

• Detailed balance property:

Peq(X )M(X → X ′) = Peq(X ′)M(X ′→ X )

• Sum over X to obtain

∑
X

Peq(X )M(X → X ′) = ∑
X

Peq(X ′)M(X ′→ X ) = Peq(X ′)

• So Peq is a fixed point of the Markov process!

• We can sample any probability distribution we desire with such an update.



Metropolis algorithms

• Make the update combine proposal and acceptance probablities

M(X → X ′) = Pp(X → X ′)Pacc (X → X ′)

• detailed balance

Peq(X )Pp(X → X ′)Pacc (X → X ′) = Peq(X ′)Pp(X ′→ X )Pacc (X ′→ X ),

• is satisfied with the Metropolis acceptance probability,

Pacc (X → X ′) = Min(1,
Peq(X ′)Pp(X ′→ X )

Peq(X )Pp(X → X ′)
)

• either Pacc (X → X ′) = 1, or Pacc (X ′→ X ); considering cases leads to trivial proof.

• Simplifies if Pp(X ′→ X ) = Pp(X → X ′) (reversible, area preserving constraint)

Basis of most Markov Chain Monte Carlo

• Aspects of this might be of interest to the numerical integration / ML / journal club (?)



QCD path integral

• Partition function becomes a real, statistical mechanical probability weight

Z =
∫

dψ̄dψdUe−SG [U]−SF [ψ̄,ψ,U]

• Dirac differential operator represented via discrete derivative approximations: sparse matrix

• (Until Taku & Gumaro sort QIS)

use pseudofermion approach to replace with Gaussian integral
√

πλ =
∫

dte−t2/λ∫
Dψ̄Dψe−ψ̄(x)Axy ψ(y) = detA

πλ =
∫

dφr e
−φr

1
λ

φr
∫

dφi e
−φi

1
λ

φi =
∫

dφ
∗dφe

−φ∗ 1
λ

φ

• replace two flavour determinant with a two flavour pseudofermion integral

(detM)2 = (detγ5M)2 = detM†M =
∫

Dφ
∗Dφe−φ∗(x)(M†M)−1φ(y)



Hybrid Monte Carlo

• Auxiliary Gaussian integral over conjugate momentum field
∫

dπe
−π2

2

Lives in Lie algbra; serves only to move U round the group Manifold∫
dπ

∫
dφ

∫
dU e−

π2
2 e−SG [U]e−φ∗(M†M)−1φ

• Outer Metropolis Monte Carlo algorithm

• Draw momenta
• Draw pseudofermion as gaussian η = M−1φ

• Metropolis acceptance step

• Metropolis proposal includes inner molecular dynamics at constant Hamiltonian:

H =
π2

2
+ SG [U] + φ

∗(M†M)−1
φ

U̇ = iπU ; i π̇ = (U∇U S)TA

• Must invert M†M at each timestep of evolution in MD force

δ(M†M)−1 =−(M†M)−1[(δM†)M + M(δM)](M†M)−1



★ Domain Decompose the Fermionic path integral at the node level
★ Large domains: algorithm tailored to GPU computation
★ Local domain solvers decouple from interconnect, realise full potential

In the case of our Dirac operator,
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Using the Schur decomposition we may write the Fermion determinant as,
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Following Luscher, we introduce projectors P@̄ with both spinor and space structure projecting all spinor elements
in ⌦ connected by D@̄ to ⌦̄, and P@ projecting all spinor elements in ⌦̄ connected by D@ to ⌦.

The matrix D@̄ acts only non-trivially on this subset of spinor components fields in @⌦̄,
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we see that
det� = detR = det(1�X)

We may therefore treat the determinant of � via a usual pseudofermion integral only over those fields in the space
projected by P@̄ .

When R is taken as matrix from this space to itself, and is non-singular, with inverse
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We seek to show that the second term is zero, by inserting the form of D and UDL form of D�1,
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Since only the lower row survives multiplication by the U
�1 matrix, the structure of M and L guarantee this term

vanishes. Thus, the inverse from the projected subspace to the subspace is indeed R
�1 given above.
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node local - runs well on an island!

Integrate non-local term
on larger timestepIn the case of our Dirac operator,
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Estimate 5x to 10x gain

Schur decomposition

Pauli antisymmetry



Observables

Importance sampling has reduced:

〈O〉=
1

Z

∫
U

e−SG [U]O(U)dU → 1

N ∑
i

O(Ui )

• Zero momentum pion, kaon or B meson two point function

∑
x

〈ūγ0γ5d(x ,t)d̄γ0γ5u(0,0)〉=
1

N ∑
i

trace{γ0γ5M−1
d (x ,t;0,0)γ0γ5M−1

u (0,0;x ,t)}

• Euclidean space ∝ Ae−mt

• Tune bare mass until interacting meson mass is correct, prefactor gives pion, kaon, B meson
decay constant

• etc..



Scalar field

• S = φ ∗(�+ m2)φ

M(x ,x ′) = δx ,x ′2(Nd + m2)−∑
µ

δx+µ,x ′ + δx−µ,x ′

• Free case: M is hermitian diagonalised by a unitary transformation

M = V †DV

• Call it the “discrete fourier transform” in the free case, and the eigenvalues are

D(p) = (2sinp/2)2 + m2

• Propagator is the inverse of this

• Interacting case: M is hermitian diagonalised by a unitary transformation

M = V †DV

• covariant derivative couples to gauge fields, numerical solution of propagator

• Still diagonalisable, eigenvectors no longer plane waves etc...

M−1 = V Diag{ 1

λi
}V † ' V Diag{P(λi )}V †

• If P is polynomial approximating 1
x over the whole spectral range ⇒ Krylov solvers



Greens functions in a lattice calculation

Each gauge configuration individually breaks translation invariance; restored under gauge average

SF (x ,y) 6= SF (x−y)

Quark propagator is the Greens function of the Dirac operator D on each gauge sample

G(y |x) = D−1
y ,z δz ,x

Never (exactly) compute all elements of G(y ,z)
Must solve the Dirac equation for each position independently.

Dxy ψ(y) = η(x)

Algorithm minimising
|r |= |Dxy ψ(y)−η(x)|

will find ψ = D−1η

Standard algorithms (Krylov solvers) are just (matrix) polynomial approximations to 1
x

Conjugate Gradients, Hestene and Steiffel (1952) has 8733 citations!



Chebyshev polynomials

Tn(x) = cos(n cos−1 x)

• n half periods over [−1,1]

• Uniform amplitude ripples
• xn growth outside range
• School boy induction using double angle formula ⇒ recursion relation

• Orthogonal under weight ρ(x) = (1−x2)
1
2

• Expansion in orthogonal polynomials ⇒ Chebyshev approximation

 0.0001

 0.01

 1

 100

 10000

 1x106

-1 -0.5  0  0.5  1

abs(cheb(x,20))



Critical slowing down

Chebyshev worst case convergence bound for Conjugate Gradients

|r |n
|r |n−1

= σ ≤
√

k−1√
k + 1

Condition number

k =
λmax

λmin

Limiting cases:

• k = 1→ σ = 0 Converges in one iteration if given a matrix with all eigenvalues equation
(basis change of identity).

• k = 1→ σ = 1 Never converges if the matrix is singular λmin = 0

• σ(k)n = tolerance estimates iteration count n

Spectrum of Dirac operator is important



Dirac Spectrum

• Atiyah Singer index theorem

• Density of zero modes of Dirac operator → eigenvalues separated from zero only by
quark mass

• Lowest (dimensionless) eigenvalue amu → 0 in continuum limit

• Domain Wall / chiral lattice fermions reproduce the chiral anomaly:

• exact zero modes in classical topological fields
• integer topological index
• satisfy Atiyah-Singer index theorem in a discrete system

• Probe non-perturbative dynamics of Yang-Mills theory



UnKrylov solvers

Possible resolutions to critical slowing down

1. Determine and accurately project a few thousand low eigenmodes1

• Cannot help HMC gauge field sampling

2. Multigrid methods approximately treating this low mode space

• Introduced for Wilson (Luscher 2007, Brower et al 2007)

Aim:

• Produce a deflation algorithm with a real gain inside HMC

1not all topological in nature



Multigrid : how it works

• Project to low dimensional basis that captures the low mode space

• Represent the original matrix in this truncated basis

• Inverse of this truncated representation corrects the current solution

Fine Coarse CoarseCoarse Evecs
λmin 1.0e-6 1.0e-6 1.0e-6 1.0e-6
λmax 60 11 5.0 4.0e-3

• Improve the condition number by lowering the cut-off as you go coarser

• Arguably a surface to volume suppression of the high modes as you block

• Smoother step helps cheaply wipe out the effects while preserving the low mode element of
coarse correction



Domain wall multigrid

Comparison of Domain Wall Fermion Multigrid Methods

Peter Boyle

HET Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA. and

School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK

Azusa Yamaguchi

School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK

Abstract

We present a detailed comparison of several recent and new approaches to multigrid solver

algorithms suitable for the solution of 5d chiral fermion actions such as Domain Wall fermions in

the Shamir formulation, and also for the Partial Fraction and Continued Fraction overlap. Our

focus is on the acceleration of gauge configuration sampling, and a compact nearest neighbour

stencil is required to limit the calculational cost of obtaining a coarse operator. This necessitates

the coarsening of a nearest neighbour operator to preserve sparsity in coarsened grids, unlike

HDCG[1]. We compare the approaches of references[2, 3] and also several new hybrid schemes. In

this work we introduce a new recursive Chebyshev polynomial based setup scheme. We find that the

approach of reference[2], can both setup, and solve standard Shamir Domain Wall Fermions faster

than a single solve with red-black preconditioned Conjugate Gradients[30] on large volumes and for

modern GPU systems such as the Summit supercomputer. This is promising for the acceleration of

HMC, particularly if setup costs are shared across multiple Hasenbusch determinant factors. The

setup scheme is likely generally applicable to other Fermion actions.

1

Hierarchically deflated conjugate residual
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We present a progress report on a new class of multigrid solver algorithm suitable for the solution
of 5d chiral fermions such as Domain Wall fermions and the Continued Fraction overlap. Unlike
HDCG [1], the algorithm works directly on a nearest neighbour fine operator. The fine operator
used is Hermitian indefinite, for example G5Ddw f , and convergence is achieved with an indefinite
matrix solver such as outer iteration based on conjugate residual. As a result coarse space repre-
sentations of the operator remain nearest neighbour, giving an 8 point stencil rather than the 81
point stencil used in HDCG. It is hoped this may make it viable to recalculate the matrix elements
of the little Dirac operator in an HMC evolution.
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Multigrid for Chiral Lattice Fermions: Domain Wall

Richard C. Brower*, M. A. Clark†, Dean Howarth*, and Evan S.

Weinberg†

*Boston University, Boston, MA 02215, USA
†NVIDIA Corporation, Santa Clara, CA 95050, USA

April 17, 2020

Abstract

Critical slowing down for the Krylov Dirac solver presents a major obstacle to

further advances in lattice field theory as it approaches the continuum solution. We

propose a new multi-grid approach for chiral fermions, applicable to both the 5-d

domain wall or 4-d Overlap operator. The central idea is to directly coarsen the 4-d

Wilson kernel, giving an e↵ective domain wall or overlap operator on each level. We

provide here an explicit construction for the Shamir domain wall formulation with

numerical tests for the 2-d Schwinger prototype, demonstrating near ideal multi-grid

scaling. The framework is designed for a natural extension to 4-d lattice QCD chi-

ral fermions, such as the Möbius, Zolotarev or Borici domain wall discretizations

or directly to a rational expansion of the 4-d Overlap operator. For the Shamir

operator, the e↵ective overlap operator is isolated by the use of a Pauli-Villars pre-

conditioner in the spirit of the Kähler-Dirac spectral map used in a recent staggered

MG algorithm [1].
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2016, QCD, D=4 2020, D=2, Schwinger model D=4, QCD both methods
Almost done

And… 2014, PAB, HDCG



II. CHIRAL FERMION ACTIONS

We consider two classes of approach for chiral fermions following the nomenclature of ref.

[24]. We restrict our consideration to five dimensional approaches to chiral fermions since

we view the non-locality associated nested four dimensional approaches chiral Fermions as

an avoidable di�culty for multigrid implementation. As discussed in the next section, this

decision is not without associated problems as it does introduce other di�culties associated

with the spectrum of the five dimensional operators. Usual Wilson matrix is,

DW (M) = M + 4� 1

2
Dhop, (1)

where,

Dhop = (1� �µ)Uµ(x)�x+µ,y + (1 + �µ)U
†
µ(y)�x�µ,y. (2)

The domain wall Fermion action is,

S5 =

Z
d4x ̄D5

DW , (3)

where,

D5
DW =

0

BBBBBBBBBBBB@

Dk �P� 0 . . . 0 mP+

�P+
. . . . . . 0 . . . 0

0
. . . . . . . . . 0

...
... 0

. . . . . . . . . 0

0 . . . 0
. . . . . . �P�

mP� 0 . . . 0 �P+ Dk

1

CCCCCCCCCCCCA

, (4)

where,

Dk = 5�M5 �
1

2
Dhop = DW (�M5) + 1. (5)

We introduce, �5 = �5R5, where R5 denote reflection in the fifth dimension. We define the

Hermitian indefinite DWF operator to be,

HDW = �5DDW . (6)

The Pauli Villars operator DPV is equal to DDW with unit mass parameter.

The continued fraction and partial fraction five dimensional representations of the overlap

operator for the standard overlap HW = �5DW kernel are already Hermitian indefinite[24],
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FIG. 1. The complex eigenvalue spectrum of the 5D Wilson operator on a 165 free field. With a

negative Wilson mass of order 1.0, as is introduced in the kernel of chiral fermions, the spectrum

completely encircles zero. In the infinite volume limit this spectrum becomes continuous, and poses

clear problems for polynomial based Krylov solvers.

A. Two level preconditioner

The key element is the selection of a deflation basis of vectors �k that lie in the near

null space of the Dirac operator. The details of how these are selected are immaterial for

the present discussion, but we will return to this in the following section. The details a↵ect

setup cost, and deflation e�ciency. The vectors �k are then restricted to blocks, enabling a

coarse space representation to be built up as follows.

�b
k(x) =

8
<

:
�k(x) ; x 2 b

0 ; x 62 b
(14)

The span of these blocks is substantially larger than the span of the originial vector set,

span{�k} ⇢ span{�b
k}. (15)
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with the continued fraction system taking the form,
2

666666664

HW
1p
�0�1

0 0 0

1p
�1�0

�HW
1p
�1�2

0 0

0 1p
�2�1

HW
1p
�2�3

0

0 0 1p
�3�2

�HW
1p
�3

0 0 0 1p
�3

R�5 + �0HW

3

777777775

, (7)

and the partial fraction system taking the form,
2

666666664

�HW
p
q2 0 0 0

p
q2 HW 0 0

p
p2

0 0 �HW
p
q1 0

0 0
p
q1 HW

p
p1

0 �p
p2 0 �p

p1 R�5 + p0HW

3

777777775

. (8)

These are both amenable to all the multigrid methods discussed in this paper, and we have

demonstrated that the continued fraction approach may be solved with a two level HDCR

algorithm. However we will not present results as the focus is on the domain wall and

Mobius Fermion actions.

A. Spectrum of domain wall fermions

It is clear that in order to make a practical algorithm for accelerating HMC evolution

with domain wall Fermions we must escape the constraint that the algorithm work on the

squared operator (or worse the squared red-black preconditioned operator). In order to

do this we must first understand why prior to reference[2] only solvers making use of the

squared operator have been successful for domain wall Fermions.

The spectrum of the free 5d Wilson operator at negative mass is illustrated in figure 1.

The eigenvalues have Re� = m + 5 �
P

cos pµ and | Im�|2 =
P

sin2 pµ. It is a reason-

able illustrative guide for that of domain wall fermion operator, di↵ering only by the free

field approximation and the fifth dimension boundary condition. Complete analysis of the

DWF propagator including the Dirichlet boundary conditions and surface states is given in

reference[28].

The spectrum for an appropriate negative mass completely encircles and violates the

half-plane condition referred to in numerical analysis literature[23]. There is a fundamental

4

Free field spectrum:

Problematic for polynomial approximation of 1/z

reason for this: in the infinite volume the spectrum will become dense, and the Krylov

solver is then being asked to form an (analytic) polynomial approximation to 1
z over an

open region encircling the pole, and the Cauchy residue theorem will apply to the error.

It is impossible to reproduce the phase winding of 1
z = 1

re
�i✓ around zero with an analytic

function. Indeed, perhaps belabouring the point, the orthogonality of the set of functions

eim✓ over [0, 2⇡] makes it easy to show that minimising the uniformly weighted mean square

error over a fixed radius circle gives precisely zero for all polynomial coe�cients. In the

case of Conjugate Gradient on the Normal Residual (CGNR), the multiplication of each

eigenvalue by its conjugate in solving,

M †
pcMpc = ⌘, (9)

places the phase behaviour under control and reduces the problem to a real spectrum, albeit

with a squared range of eigenvalue magnitudes. CGNR is used to date in RBC-UKQCD

domain wall Fermion evolution. There is, in principle, a reduced convergence rate arising

from the squared changed condition number in the convergence bound[26],

� =

p
K � 1p
K + 1

, (10)

where � is the residual reduction in one iteration, and K = �max
�min

is the condition number

of the matrix. On the free field on the unpreconditioned normal equations the maximal

eigenvalue is of O(100).

In the discrete spectrum, finite volume case, we can consider a toy models which also

illustrate the problem. If the spectrum consists of N eigenvalues �k = ei2⇡k/N the conjugate

gradient will only converge with an N-term polynomial, which can be analytically arrived

at by Gaussian elimination for small N [23].

In reference[2], the authors proposed to solve this phase problem using �5 Hermiticity,

without squaring the operator, leaving the coarse space representation of the operator still

nearest neighbour. Since the sparsity pattern is preserved this represented the first true

multigrid algorithm for five dimensional chiral fermions.

With a restrictor that is �5 compatible, HDCR can be thought of as either solving a

Hermitian indefinite coarsened system, or the squared coarse operator in a normal equations

sense.

P†�5DDWPP†�5DDWP = P†D†
DWPP†DDWP (11)

5

reason for this: in the infinite volume the spectrum will become dense, and the Krylov

solver is then being asked to form an (analytic) polynomial approximation to 1
z over an

open region encircling the pole, and the Cauchy residue theorem will apply to the error.

It is impossible to reproduce the phase winding of 1
z = 1

re
�i✓ around zero with an analytic

function. Indeed, perhaps belabouring the point, the orthogonality of the set of functions

eim✓ over [0, 2⇡] makes it easy to show that minimising the uniformly weighted mean square

error over a fixed radius circle gives precisely zero for all polynomial coe�cients. In the

case of Conjugate Gradient on the Normal Residual (CGNR), the multiplication of each

eigenvalue by its conjugate in solving,

M †
pcMpc = ⌘, (9)

places the phase behaviour under control and reduces the problem to a real spectrum, albeit

with a squared range of eigenvalue magnitudes. CGNR is used to date in RBC-UKQCD

domain wall Fermion evolution. There is, in principle, a reduced convergence rate arising

from the squared changed condition number in the convergence bound[26],

� =

p
K � 1p
K + 1

, (10)

where � is the residual reduction in one iteration, and K = �max
�min

is the condition number

of the matrix. On the free field on the unpreconditioned normal equations the maximal

eigenvalue is of O(100).

In the discrete spectrum, finite volume case, we can consider a toy models which also

illustrate the problem. If the spectrum consists of N eigenvalues �k = ei2⇡k/N the conjugate

gradient will only converge with an N-term polynomial, which can be analytically arrived

at by Gaussian elimination for small N [23].

In reference[2], the authors proposed to solve this phase problem using �5 Hermiticity,

without squaring the operator, leaving the coarse space representation of the operator still

nearest neighbour. Since the sparsity pattern is preserved this represented the first true

multigrid algorithm for five dimensional chiral fermions.

With a restrictor that is �5 compatible, HDCR can be thought of as either solving a

Hermitian indefinite coarsened system, or the squared coarse operator in a normal equations

sense.

P†�5DDWPP†�5DDWP = P†D†
DWPP†DDWP (11)

5

CGNR



Fine Grid 163 ⇥ 32⇥ 16

Fine Krylov pCG(Mee �MeoM
�1
oo Moe)†(Mee �MeoM

�1
oo Moe)

Smoother Schebyshev([0.5, 60], 12)

Coarsening (Mee �MeoM
�1
oo Moe)†(Mee �MeoM

�1
oo Moe)

Coarse Grid 83 ⇥ 16⇥ 1

Coarse Solver CG

Coarse Tolerance 0.05

Coarse Eigenvectors 32

Subspace basis 32

Subspace �max 30.0

Subspace �lo 0.02

Subspace m 500

Subspace � 100

TABLE IV. Algorithm G is an arithmetically correct, but ine�cient, reimplementation of HDCG[1].

Algorithm Operator Iterations Full Matmuls Time (s)

CGNR M
†
M 9541 19082 183s

BiCGSTAB M
†
PV M 4140 8280 79s

prec-CGNR (Mee �MeoM
�1
oo Moe)†(Mee �MeoM

�1
oo Moe) 3224 6448 62s

prec-CGNR (1�M
�1
ee MeoM

�1
oo Moe)†(1�M

�1
ee MeoM

�1
oo Moe) 3880 7760 77s

GCR(32,32) M
†
PV M 8693 17386 474s

GCR(8,8) M
†
PV M FIXME

TABLE V. We display the wall clock timing, iteration count and (full grid) matrix multiply count

for each of unpreconditioned Conjugate Gradients, BiCGSTAB on the Pauli Villars preconditioned

operator, two forms of red-black preconditioned Conjugate Gradients. In the two red black precon-

ditioned cases the number of half grid matrix multiplies is double the full grid count given in this

table, and the cost of each is of course halved, making the all the counts in this table an equivalent

cost comparison.

37

Krylov solvers on 16^3 configuration, m=0.001
of the even-odd solver has four applications of the even odd hopping term, costing half the

floating point operations of a full grid matrix multiply. Each iteration is therefore equivalent

to two both checkerboard matrix multiplies, and we count in the units of both checkerboards

to keep the number of matrix multiplies directly comparable to the non-redblack solvers. In

other words, (Mee�MeoM�1
oo Moe) is counted as a single both-checkerboard matrix multiply.

The corresponding cost for red-black solves are therefore 7760 and 6448 matrix multiplies

and 3880 and 3224 iterations depending on the precise details of the Schur decomposition

scheme used in the preconditioner.
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FIG. 3. We plot the convergence history of the five conventional Krylov solver algorithms, from

Table V.

B. Numerical cost of multigrid algorithms

For each algorithm, the parameters were carefully tuned and are believed optimal within

the space covered by the algorithm. These results are central to this paper, and require

some careful discussion. Table VI gives a key to the mapping of Algorithms A-G for which

results are presented to meaningful classification names. These names are explained below.
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FIG. 1. The complex eigenvalue spectrum of the 5D Wilson operator on a 165 free field. With a

negative Wilson mass of order 1.0, as is introduced in the kernel of chiral fermions, the spectrum

completely encircles zero. In the infinite volume limit this spectrum becomes continuous, and poses

clear problems for polynomial based Krylov solvers.
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The key element is the selection of a deflation basis of vectors �k that lie in the near

null space of the Dirac operator. The details of how these are selected are immaterial for

the present discussion, but we will return to this in the following section. The details a↵ect

setup cost, and deflation e�ciency. The vectors �k are then restricted to blocks, enabling a

coarse space representation to be built up as follows.
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span{�k} ⇢ span{�b
k}. (15)

8

Generate near null vectors – new with Chebyshev:

Restrict to cuboidal blocks

FIG. 1. The complex eigenvalue spectrum of the 5D Wilson operator on a 165 free field. With a

negative Wilson mass of order 1.0, as is introduced in the kernel of chiral fermions, the spectrum

completely encircles zero. In the infinite volume limit this spectrum becomes continuous, and poses

clear problems for polynomial based Krylov solvers.

A. Two level preconditioner

The key element is the selection of a deflation basis of vectors �k that lie in the near

null space of the Dirac operator. The details of how these are selected are immaterial for

the present discussion, but we will return to this in the following section. The details a↵ect

setup cost, and deflation e�ciency. The vectors �k are then restricted to blocks, enabling a

coarse space representation to be built up as follows.

�b
k(x) =

8
<

:
�k(x) ; x 2 b

0 ; x 62 b
(14)

The span of these blocks is substantially larger than the span of the originial vector set,

span{�k} ⇢ span{�b
k}. (15)

8

Lattice multigrid

Use as a cheap, compressed short-hand basis for the low modes

FIG. 1. The complex eigenvalue spectrum of the 5D Wilson operator on a 165 free field. With a

negative Wilson mass of order 1.0, as is introduced in the kernel of chiral fermions, the spectrum

completely encircles zero. In the infinite volume limit this spectrum becomes continuous, and poses

clear problems for polynomial based Krylov solvers.

A. Two level preconditioner

The key element is the selection of a deflation basis of vectors �k that lie in the near

null space of the Dirac operator. The details of how these are selected are immaterial for

the present discussion, but we will return to this in the following section. The details a↵ect

setup cost, and deflation e�ciency. The vectors �k are then restricted to blocks, enabling a

coarse space representation to be built up as follows.

�b
k(x) =

8
<

:
�k(x) ; x 2 b

0 ; x 62 b
(14)

The span of these blocks is substantially larger than the span of the originial vector set,

span{�k} ⇢ span{�b
k}. (15)

8

Efficient because linear space spanned by blocks is O(volume) bigger

ar
X

iv
:0

70
6.

22
98

v4
  [

he
p-

la
t] 

 3
0 

Ju
l 2

00
7

CERN-PH-TH/2007-096

Local coherence and deflation of the low

quark modes in lattice QCD

Martin Lüscher
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Abstract

The spontaneous breaking of chiral symmetry in QCD is known to be linked to a non-zero

density of eigenvalues of the massless Dirac operator near the origin. Numerical studies of

two-flavour QCD now suggest that the low quark modes are locally coherent to a certain

extent. As a consequence, the modes can be simultaneously deflated, using local projectors,

with a total computational effort proportional to the lattice volume (rather than its square).

Deflation has potentially many uses in lattice QCD. The technique is here worked out for

the case of quark propagator calculations, where large speed-up factors and a flat scaling

behaviour with respect to the quark mass are achieved.

1. Introduction

The physical masses of the up and down quarks are much smaller than the typical
low-energy hadronic scales such as the pion decay constant and the string tension. In
numerical lattice QCD, the smallness of the quark masses still is a source of difficulty,
for various reasons, but mainly because the available simulation techniques become
inefficient close to the chiral limit.

It is not excluded, however, that many of the present limitations in lattice QCD
can be overcome by “deflating QCD”, i.e. by treating the eigenmodes of the Dirac
operator with small eigenvalues separately from the bulk of the quark modes. Defla-
tion techniques are used in many areas of applied science and they are also an active
research topic in numerical mathematics (see refs. [1,2], for example, and references
quoted there). In lattice QCD low-mode deflation was so far mainly used in connec-
tion with statistical error reduction methods [3–7] that now go under the headings of

1

a well-defined meaning in presence of a non-trivial lattice gauge field.
A related concept which is better adapted to the situation in the full theory is local

coherence. Loosely speaking, a set of quark fields is referred to as locally coherent if
the fields are locally well approximated by a relatively small number of fields. When
projected to the blocks of a block lattice, for example, such fields are contained in
small subspaces of block fields, up to small deficits that depend on the block size
and the dimension of the local subspaces.

It is quite clear that the block projection method can only work out if the low quark
modes are locally coherent in this sense. Whether this is so appears to be difficult to
tell on the basis of simple reasoning alone. The free-quark theory certainly provides
little guidance at this point, because the physics of the low modes is completely
different from the one in the full theory.

5.2 Numerical experiments

Local coherence is a property that can be investigated numerically in a straightfor-
ward manner. One begins with an accurate computation of the low-lying eigenvalues
and associated eigenmodes of D†D and constructs a domain-decomposed subspace
from an arbitrary subset of the calculated modes, following the lines of subsect. 4.2.
The question is then whether all other low modes are also contained in this subspace,
up to small deficits ε.

Several numerical experiments of this kind were performed in two-flavour QCD on
the lattices specified in subsect. 2.1. The results are quite impressive and unambigu-
ously show that the low modes in this theory are locally coherent to a high degree.
Moreover, the property appears to hold for every individual gauge-field configuration
and not just on average.

If the 64 × 323 lattice is divided into blocks of size 44, for example, and if 12
eigenmodes out of 48 are selected for the construction of the domain-decomposed
subspace, the remaining 36 modes turn out to lie in the subspace up to deficits ε
ranging from 0.03 to 0.06. The deficits increase with the block size, but become
smaller if more modes are used for the subspace construction. On the 48 × 243

lattice the situation is practically the same, i.e. similar deficits are obtained for a
given block size and subspace dimension.

5.3 Subspace generation

As explained in subsect. 4.2, the deflation subspaces constructed in this paper are
obtained by restricting a set of quark fields ψl(x), l = 1, . . . , Ns, to the blocks of
a block division of the lattice. The fields could be taken to be low eigenmodes of
the Dirac operator, but it is far more economical to generate them by a relaxation

11
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FIG. 2. Overlay of Chebyshev low-pass filter functions used to create the subspace. An initial

O(500) low pass filter enhances the low mode content from Gaussian noise by 108. This is refiltered

with further, recursive Chebyshev functions of the fine operator, with a total of 1500 further matrix

multiplies for 16 vectors. Plotted is the absolute value of the filter response for each of the 16 filtered

vectors versus eigenvalue. The filter parameters have �max = 60, m = 500, � = 100 and �lo = 0.02,

and are taken from the optimimum from a 163⇥32 domain wall Fermion test case. The downward

drops (obviously) correspond to the roots of the polynomials and bands within the target spectral

range have relative signs inserted for di↵erent order polynomials, creating independent vectors.

E. Coarse space deflation

FIXME - DISCUSS LANCZOS AND CRUDE DIAGONALISATION

IV. ALGORITHMS

We investigated a number of di↵erent, broadly related algorithms, based on previous

work by the authors[2] and the recent work reference [3].
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and it is by now well demonstrated to capture the near null space of the operator. This

property is variously known as the weak approximation property [4], local coherence[5] and

has been demonstrated as e↵ective for data compression of individual eigenvectors[20].

The fine operator is used to generate a coarse space representation that faithfully rep-

resents the matrix on this subspace, and the inverse of the subspace restriction is used to

accelerate convergence since by design this subspace encapsulates modes with smallest eigen-

values that are the slowest to converge in a Krylov solver, requiring high polynomial orders

for accuracy.

We introduce projectors to the subspace S and its complement S̄,

PS =
X

k,b

|�b
kih�b

k| ; PS̄ = 1� PS, (16)

and can decompose the matrix into terms within and between S and S̄,

M =

0

@MS̄S̄ MSS̄

MS̄S MSS

1

A =

0

@ PS̄MPS̄ PSMPS̄

PS̄MPS PSMPS

1

A (17)

we can represent the matrix M exactly on this subspace by computing its matrix elements,

known as the little Dirac operator (coarse grid matrix in multi-grid)

Aab
jk = h�a

j |M |�b
ki ; (MSS) = Aab

ij |�a
i ih�b

j|. (18)

the subspace inverse can be solved by Krylov methods and is,

Q =

0

@ 0 0

0 M�1
SS

1

A ; M�1
SS = (A�1)abij |�a

i ih�b
j|. (19)

It is important to note that A inherits a sparse structure from M because well separated

blocks do not connect through M . The operator A is implemented on a coarse linear space,

and the restrictor P† = h�b
k| and prolongator P = |�b

ki . We can Schur decompose the matrix

M = UDL =

2

4 Ms̄s̄ Ms̄s

Mss̄ Mss

3

5 =

2

4 1 Ms̄sM�1
ss

0 1

3

5

2

4 S 0

0 Mss

3

5

2

4 1 0

M�1
ss Mss̄ 1

3

5

The Galerkin oblique projectors PL and PR are formed from the diagonalisation L and U ,

PL = PS̄U
�1 =

0

@ 1 �MS̄SM
�1
SS

0 0

1

A = (1�MQ) (20)

9

and it is by now well demonstrated to capture the near null space of the operator. This

property is variously known as the weak approximation property [4], local coherence[5] and

has been demonstrated as e↵ective for data compression of individual eigenvectors[20].

The fine operator is used to generate a coarse space representation that faithfully rep-

resents the matrix on this subspace, and the inverse of the subspace restriction is used to

accelerate convergence since by design this subspace encapsulates modes with smallest eigen-

values that are the slowest to converge in a Krylov solver, requiring high polynomial orders

for accuracy.

We introduce projectors to the subspace S and its complement S̄,

PS =
X

k,b

|�b
kih�b

k| ; PS̄ = 1� PS, (16)

and can decompose the matrix into terms within and between S and S̄,

M =

0

@MS̄S̄ MSS̄

MS̄S MSS

1

A =

0

@ PS̄MPS̄ PSMPS̄

PS̄MPS PSMPS

1

A (17)

we can represent the matrix M exactly on this subspace by computing its matrix elements,

known as the little Dirac operator (coarse grid matrix in multi-grid)

Aab
jk = h�a

j |M |�b
ki ; (MSS) = Aab

ij |�a
i ih�b

j|. (18)

the subspace inverse can be solved by Krylov methods and is,

Q =

0

@ 0 0

0 M�1
SS

1

A ; M�1
SS = (A�1)abij |�a

i ih�b
j|. (19)

It is important to note that A inherits a sparse structure from M because well separated

blocks do not connect through M . The operator A is implemented on a coarse linear space,

and the restrictor P† = h�b
k| and prolongator P = |�b

ki . We can Schur decompose the matrix

M = UDL =

2

4 Ms̄s̄ Ms̄s

Mss̄ Mss

3
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4 1 Ms̄sM�1
ss
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5

The Galerkin oblique projectors PL and PR are formed from the diagonalisation L and U ,

PL = PS̄U
�1 =

0

@ 1 �MS̄SM
�1
SS

0 0

1

A = (1�MQ) (20)
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and it is by now well demonstrated to capture the near null space of the operator. This

property is variously known as the weak approximation property [4], local coherence[5] and

has been demonstrated as e↵ective for data compression of individual eigenvectors[20].

The fine operator is used to generate a coarse space representation that faithfully rep-

resents the matrix on this subspace, and the inverse of the subspace restriction is used to

accelerate convergence since by design this subspace encapsulates modes with smallest eigen-

values that are the slowest to converge in a Krylov solver, requiring high polynomial orders

for accuracy.

We introduce projectors to the subspace S and its complement S̄,

PS =
X

k,b

|�b
kih�b

k| ; PS̄ = 1� PS, (16)

and can decompose the matrix into terms within and between S and S̄,

M =

0

@MS̄S̄ MSS̄

MS̄S MSS

1

A =

0

@ PS̄MPS̄ PSMPS̄

PS̄MPS PSMPS

1

A (17)
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Define coarse grid operator:

PR = L�1PS̄ =

0

@ 1 0

�M�1
SSMSS̄ 0

1

A = (1�QM), (21)

and

PLM =

2

4 S 0

0 0

3

5 (22)

yields the Schur complement S = Ms̄s̄ �Ms̄sM�1
ss Mss̄.

B. Chebyshev and Krylov smoothers

We introduce a smoother, and in this work either use a low order Chebyshev polynomial

approximation to 1/x over a fixed range, or use a fixed iteration count Krylov solver. We find

the Chebyshev smoother numerically more e�ent than Schwarz Alternating Procedue (SAP)

based smoothers, but they do have significantly higher communication load when more than

one processing node is used. For our small volume tests this is relatively immaterial as we

have very fast intranode communication and use only a single node. It is worth commenting

that Chebyshev functions are excellent tools, diagnostics and probes for algorithmic issues;

the ability to use a spectral band pass filter and measure the power spectrum of the residual

on any given outer iteration on a test system allows precise diagnostics of the convergence

of the system and where preconditioners should be improved.

The Chebyshev polynomials are

Tn(x) = cos
�
n cos�1 x

�
. (23)

These can be produced with a recurrence relation. The general interval [a, b] is mapped to

the standard chebyshev interval [�1, 1] with the transformation x = 2(y�a)/(b�a)�1. For

non-Hermitian systems, we base the Chebyshev smoother of degee N on the normal residual

system

Schebyshev([a,b],N) =

"
1

2
c0 +

NX

j=1

cjTj(
2(M †M � a)

b� a
� 1)

#
M † (24)

where the Chebyshev coe�cients cj are given by the usual Chebyshev approximation sum,

taking f(y) = 1/y, ✓k =
⇡(k+ 1

2 )

N , and

cj =
2

N

N�1X

k=0

f(y(cos ✓k)) cos (j✓k) . (25)
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Chebyshev smoothers – cj are the Chebyshev expansion of 1/x:

�5 Hermiticity makes this equivalent to a polynomial of degree 2N + 1 in the Hermitian

indefinite matrix M�5, and since 1/x is odd this normal residual approach is a convenient

way to generate an appropriate (optimal in the Chebyshev sense) smoother polynomial.

In the case of the multigrid algorithm[3], a fixed iteration count either a GCR or a

BiCGSTAB smoother is used.

C. Composite V(1,1) multigrid preconditioner

To maintain hermiticity in the outer iteration, we presently introduce the smoother and

coarse grid correction as preconditioner in a symmetric way, with the composite outer Krylov

operating on the matrix with a multigrid cycle as a preconditioner.

The equivalence of a sequence of multigrid correction steps to a preconditioner can be

seen if consider the V11 with a pre-smoother (S), coarse correction (Q), and post-smoother

(S) in sequence,

x1 = x0 + Sr0 (26)

x2 = x1 +Qr1 (27)

x3 = x2 + Sr2. (28)

Since we may substitute and reduce the final update in terms of r0 = b�Mx0 and x0,

r1 = b�Mx1 = r0 �MSr0 (29)

r2 = b�Mx2 = r0 �MSr0 �MQr0 +MQMSr0. (30)

The final update sequence is then,

x3 = x0 + [S(1�MQ) +Q+ (1�QM)S + S(MQM �M)S] r0 (31)

= x0 + [SPL +Q+ PRS + SPLMS] r0 (32)

This V (1, 1) multigrid error cycle suggests the adoption of the matrix,

[SPL +Q+ PRS + SPLMS] (33)

applied to the current residual as a preconditioner in an outer Krylov solver, with its im-

plementation being as the above sequence of error correction steps based on the current

residual r0 as input.
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Two ways to fix inappropriate spectrum and retain nearest neighbour coarsening

BNL / Edinburgh

II. CHIRAL FERMION ACTIONS

We consider two classes of approach for chiral fermions following the nomenclature of ref.

[24]. We restrict our consideration to five dimensional approaches to chiral fermions since

we view the non-locality associated nested four dimensional approaches chiral Fermions as

an avoidable di�culty for multigrid implementation. As discussed in the next section, this

decision is not without associated problems as it does introduce other di�culties associated

with the spectrum of the five dimensional operators. Usual Wilson matrix is,

DW (M) = M + 4� 1

2
Dhop, (1)

where,

Dhop = (1� �µ)Uµ(x)�x+µ,y + (1 + �µ)U
†
µ(y)�x�µ,y. (2)

The domain wall Fermion action is,

S5 =

Z
d4x ̄D5

DW , (3)

where,

D5
DW =

0

BBBBBBBBBBBB@

Dk �P� 0 . . . 0 mP+

�P+
. . . . . . 0 . . . 0

0
. . . . . . . . . 0

...
... 0

. . . . . . . . . 0

0 . . . 0
. . . . . . �P�

mP� 0 . . . 0 �P+ Dk

1

CCCCCCCCCCCCA

, (4)

where,

Dk = 5�M5 �
1

2
Dhop = DW (�M5) + 1. (5)

We introduce, �5 = �5R5, where R5 denote reflection in the fifth dimension. We define the

Hermitian indefinite DWF operator to be,

HDW = �5DDW . (6)

The Pauli Villars operator DPV is equal to DDW with unit mass parameter.

The continued fraction and partial fraction five dimensional representations of the overlap

operator for the standard overlap HW = �5DW kernel are already Hermitian indefinite[24],

3

reason for this: in the infinite volume the spectrum will become dense, and the Krylov

solver is then being asked to form an (analytic) polynomial approximation to 1
z over an

open region encircling the pole, and the Cauchy residue theorem will apply to the error.

It is impossible to reproduce the phase winding of 1
z = 1

re
�i✓ around zero with an analytic

function. Indeed, perhaps belabouring the point, the orthogonality of the set of functions

eim✓ over [0, 2⇡] makes it easy to show that minimising the uniformly weighted mean square

error over a fixed radius circle gives precisely zero for all polynomial coe�cients. In the

case of Conjugate Gradient on the Normal Residual (CGNR), the multiplication of each

eigenvalue by its conjugate in solving,

M †
pcMpc = ⌘, (9)

places the phase behaviour under control and reduces the problem to a real spectrum, albeit

with a squared range of eigenvalue magnitudes. CGNR is used to date in RBC-UKQCD

domain wall Fermion evolution. There is, in principle, a reduced convergence rate arising

from the squared changed condition number in the convergence bound[26],

� =

p
K � 1p
K + 1

, (10)

where � is the residual reduction in one iteration, and K = �max
�min

is the condition number

of the matrix. On the free field on the unpreconditioned normal equations the maximal

eigenvalue is of O(100).

In the discrete spectrum, finite volume case, we can consider a toy models which also

illustrate the problem. If the spectrum consists of N eigenvalues �k = ei2⇡k/N the conjugate

gradient will only converge with an N-term polynomial, which can be analytically arrived

at by Gaussian elimination for small N [23].

In reference[2], the authors proposed to solve this phase problem using �5 Hermiticity,

without squaring the operator, leaving the coarse space representation of the operator still

nearest neighbour. Since the sparsity pattern is preserved this represented the first true

multigrid algorithm for five dimensional chiral fermions.

With a restrictor that is �5 compatible, HDCR can be thought of as either solving a

Hermitian indefinite coarsened system, or the squared coarse operator in a normal equations

sense.

P†�5DDWPP†�5DDWP = P†D†
DWPP†DDWP (11)

5

Hermitian operator has real indefinite spectrum
Mimic how CGNR works

�5 compatible coarsenings have been used for some time in Wilson multigrid[? ]. While well

understood, it is probably worth some comments on the advantages. DW is a non-Hermitian,

non-normal operator. It’s left and right eigenvectors do not coincide and its singular value

decomposition (SVD) takes the form:

UDV †

a general normal matrix has left and right eigenvectors coincide and has SVD,

V DV †

while a Hermitian matrix takes the same form with real eigenvalues contained in D. Preser-

vation �5 Hermiticity in coarsening was initially debated in the development of multigrid for

Wilson and clover Fermions [5, 10, 21]. We believe that a key point is that the �5 Hermi-

tian operator is normal, and guarantees that the left and right null spaces coincide. A �5

compatible coarsening of DW is equivalent in span to a coarsening of HW .

These �5 Hermitian operator is nearest neighbour in the space-time dimensions and pre-

serves sparsity in a coarse space with a four dimensional coarsening. The Hermiticity gives

rise to a real indefinite spectrum, and the squared eigenvalues are the spectrum of the Her-

mitian positive definite squared operator. As a theoretical exercise, in the infinite volume

the spectrum will be dense, real and symmetrical about the origin. From the perspective of

a Krylov solver the polynomial approximation P (�) ⇠ 1
� must be made over a the subset of

real line � 2 [��max,��min] [ [�min,�max]

Such a spectrum succumbs easily to the (generalised) conjugate residual algorithm, which

relaxes the Hermitian positive definite constraint of conjugate gradients to only Hermitian

indefinite. We therefore use variants of conjugate residuals as the basis of the outer fine

matrix iteration. Regarding the relative e�ciency, it is worth to note that we create a Krylov

space that strictly contains the CGNE Krylov space (spanned by every second term).

PN(D
†D)D† = PN(�5D�5D)�5D�5 ⇢ P2N+1(Hdwf )�5 = P2N+1(�5D)�5 (12)

Further, since either on average or in the infinite volume, the spectrum will be symmetrical

about zero, the even terms cannot contribute to an approximation of the (odd) function 1
x

and the in this limit the iteration should converge with an identical number of applications

of the nearest neighbour fermion operator as unpreconditioned CGNE. This limit is observed

to be practically true even on 163 configurations.

6

Boston1. Pauli-Villars preconditioning

It was shown in refererence[3] that the fine operator

M †
PVMl

satisfies the half plane condition and represents a wholly new alternative for preconditioning

domain wall fermions. It potentially raises the range of the required coarse space Krylov

polynomial from [m2
l , 64] to [ml, 64], at the expense of treating a non-Hermitian squared

operator. Finding evidence of algorithmic benefit from this direction is one goal of this

work, as it will indicate whether further gains may be possible using this direction. The

matrix is projected to the coarse space, and approximated as

P†D†
PV PP†DDWP (13)

In this work we study this system in the case of SU(3) gauge theory and four dimensions

for the first time in this work. In principle, with an non-Hermitian solver, one can tune the

adjoint matrix mass continuously between the Pauli Villars mass and the light quark mass

between the usual squared operator limits and this new Pauli Villars preconditioning idea.

The spectrum will vary between being real with lowest eigenvalue of O(m2
l ), and complex

with a larger minimal real component. There is a lot of scope for further study, since we

seek a preconditioning that allows the most accurate polynomial approximation to 1
z at fixed

high order, over the (tunable) spectral domain of this preconditioned operator leading to an

interesting optimisation problem.

III. MULTIGRID ALGORITHMS

The fundamental element of multigrid algorithms is the two level preconditioner. These

may then be nested recursively whenever the sparsity pattern is preserved in the coarsening.

These are combined with smoothers, and introduced as a multigrid correction step to Krylov

process as a preconditioner, we use either variable preconditioned GCR[31], BiCGSTAB[32]

or CG[30] as the outer iteration. These Krylov solvers are a standard algorithm we will

not document in the interests of brevity, but in this section document the elements of a

multigrid preconditioner used in this work. These are a two level preconditioner, smoothers,

and subspace generation.
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Figure 2.5: The spectrum of our target multigrid operator, D†
PVDDW , compared with the

e↵ective overlap spectrum, D�1
PVDDW . For clarity of presentation we truncate the x-axis;

the spectrum of D†
PVDDW extends out to Re(�)⇡ 25.

as motivated by low-order expansion of the Pauli-Villars normal operator given in Eq. 2.22.

This approximate operator importantly preserves the property that the spectrum is con-

fined to the right complex half-plane,
⇣
D

†
PVDPV

⌘
D

�1
PVDDW |�i = re

i✓
|�i , ; (2.28)

with �⇡/2 < ✓ < ⇡/2 for all eigenvalues � = r exp[i✓]. This is proven in Appendix B

based on the positive definite spectra of the normal operator factor and the right-half

plane spectrum of D�1
PVDDW . This does imply Krylov solvers such as BiCGStab

can be directly applied to this approximate operator.

While Fig. 2.5 is consistent with this property, the qualitatively strong match between

the low eigenvalues of the two operators suggests we can make a much stronger statement.

Indeed the two operators are nearly identical, with deviations confined to larger eigenvalues

in the approach to the cut-o↵ scale ⇡/a. This is again motivated by the free field limit
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These are combined with smoothers, and introduced as a multigrid correction step to Krylov
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Name Algorithms

HDCR A,B

MG-PV C,D

MG-M †
M E

Hybrid-M †
M F

HDCG G

TABLE VI. Names used for di↵erent classes of algorithm in this paper.

Coarse

Iterations

Outer

Iterations

Fine

Matmuls

Time Coarse

residual

Coarse

eigenvectors

RB-CGNR - 3224 6448 62s - -

A 83 25 1200 20.7s 0.02 48

A 66 24 1152 19.6s 0.02 64

A 54 25 1200 19.8s 0.04 64

A 34 28 1344 21.8s 0.1 64

A 47 23 1104 18.6s 0.02 128

A 40 24 1152 19.1s 0.04 128

A 27 24 1152 18.8s 0.1 128

B 94 22 1056 20.5s 0.02 48

B 58 21 1008 18.8s 0.02 128

B 44 21 1008 17.7s 0.04 128

B 66 24 1152 19.8s 0.1 128

TABLE VII. We display the wall clock timing and matrix multiply count for HDCR Algorithms

A, B. The coarse iterations are the number of iterations per coarse solve, and this is performed

once every outer iteration in each algorithm. The total number of coarse matrix applications

are therefore the product of these numbers. The number of fine matrix multiplies are directly

comparable in all cases. The lattice volume is 163 ⇥ 32 and the (non-unitary) light quark mass is

ml = 0.001. The coarsening factor is 24⇥ 16, and 16 left handed and 16 right handed basis vectors

are used.
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Algorithms A and B are specified in Table I and are variations of HDCR, with di↵erent

coarse blocking factors (4, 2, 4, 2, 16 and 24, 16) and numbers of deflation vectors (40 and 32).

The coarsening is based on the Hermitian domain wall operator HDW . The comparison is

intended to probe the trade o↵ between block size and number of basis vectors. The coarse

grid in algorithm B contains 3.2 times more degrees of freedom than algorithm A, while the

matrix multiply cost is 2.56 times more expesive. However, the set up costs are higher for

algorithm A, with 40 vectors, and in HMC where we aim to amortise the cost over a single

solve, it is important to minimise setup cost. Numerical experiments have been performed

over a much, much larger space than presented in this table, but these figures are typical

of the optimal region. The coarse level solve was performed with Conjugate Gradients[30]

on the normal residual, and was deflated with Lanczos derived eigenvectors. The setup

was based on our Chebyshev polynomial filtering scheme using the five dimensional squared

D†
DWDDW operator.

Algorithm A B

Fine Grid 163 ⇥ 32⇥ 16 163 ⇥ 32⇥ 16

Block 4⇥ 2⇥ 4⇥ 2⇥ 16 24 ⇥ 16

Coarse Grid 4⇥ 8⇥ 4⇥ 16⇥ 1 83 ⇥ 16⇥ 1

Outer Krylov pGCR(HDW ) pGCR(HDW )

Basis vectors 40 32

Smoother Schebyshev([0.5, 60], 12) Schebyshev([0.5, 60], 12)

Coarsening HDW HDW

Coarse Solver Deflated CGNR Deflated CGNR

Coarse Tolerance 0.02/0.04 0.02/0.04

Coarse Eigenvectors 48/64 48/128

Subspace �max 60.0 60.0

Subspace �lo 0.05 0.05

Subspace m 500 500

Subspace � 100 100

TABLE I. Algorithms A and B correspond to HDCR[2]. The comparison is intended to probe the

trade o↵ between block size and number if basis vectors.
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Algorithm C D E

Fine

Grid

16⇥ 32⇥ 16 163 ⇥ 32⇥ 16 163 ⇥ 32⇥ 16

Block 24 ⇥ 1 24 ⇥ 1 24 ⇥ 1

Coarse

Grid

83 ⇥ 16⇥ 16 83 ⇥ 16⇥ 16 83 ⇥ 16⇥ 16

Fine

Krylov

pGCR(M †
PV M) pGCR(M †

PV M) pGCR(M)

Smoother SBiCGSTAB(24) SGCR(14) Schebyshev([0.5, 60], 14)

Coarsening DW DW DW

Coarse

Solver

BiCGSTAB(M †
PV M) GCR(M †

PV M) CGNR(M †
M)

Coarse

Tolerance

0.02 0.02 0.02/0.1

Coarse

Eigenvectors

0 0 0/64

Subspace

basis

24 24 24

Subspace

�max

60.0 60.0 60.0

Subspace �lo 4.0 4.0 4.0

Subspace m 600 600 600

Subspace � 250 250 250

TABLE II. Algorithm C corresponds to reference [3], but uses a GCR outer solver. The smoother

was a fixed number of iterations of BiCGSTAB, and we found that O(24) were required to maintain

convergence of the solution. Algorithm D replaces the BiCGSTAB smoother with a GCR smoother,

and we found convergence remained possible with reduced smoother cost. Algorithm E uses the

4D coarsening scheme of reference [3], but combined with the multigrid approach of HDCR[2].

The deflation subspaces are identical in both these cases. The dimension of the coarse space is

proportional to Ls and so substantially greater than the HDCR case. Algorithm E was tried both

with and without eigenvector deflation in the coarse space.
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Algorithm shoot out
Many parameters tuned

Algorithm F

Fine Grid 163 ⇥ 32⇥ 16

Fine Krylov pGCR(M)

Smoother Schebyshev([0.5, 60], 12)

Coarsening DW

Coarse Grid 83 ⇥ 16⇥ 16

Coarse Solver pGCR(M)

Coarse Tolerance 0.01

Subspace basis 24

Subspace �max 60.0

Subspace �lo 4.0

Subspace m 600

Subspace � 250

Coarsening HDW

Coarse Grid 83 ⇥ 16⇥ 1

Coarse Solver CGNR(M †
M)

Coarse Tolerance 0.02

Coarse Eigenvectors 128

Subspace basis 32

Subspace �max 60.0

Subspace �lo 4.0

Subspace m 600

Subspace � 250

TABLE III. Algorithm F is a hybrid three level scheme combining one level of coarsening using

a representation of DW with a second level of coarsening using HDW on the coarse space. The

algorithm is then deflated using Lanczos derived eigenvectors in the coarse-coarse space and CGNR.
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FIG. 4. We plot the convergence history of Algorithms A-G versus outer iterations. Since the

smoother and coarse grid cost are not included the x-axis in anyway. Although convergence rate

is dictated by the overall e�ciency of the combined multigrid preconditioner, the cost of the

preconditioner (which comprises both Smoothers and a coarse grid correction) must be included

for meaningful comparison.

2. Execution time

When the cost of the coarse space is factored, a convergence versus time is the most useful

comparison, so we will discuss the relative execution time of the algorithms. The optimal

algorithm is computing techonology dependent, and subject to variations in architectures as

the balance between the cost of the coarse grid solves and the fine grid operator will change.

While it may be attractive to try to abstract cost and develop algorithms without ref-

erence to computing hardware, this is a fallacy. We try in this paper to focus as much as

possible on machine independent statements. However two important points are: a) the

relative cost of coarse and fine space operations is dictated by both code implementation

and computing hardware properties and b) algorithmic parameters can move cost between

these two classes of operation. This means that if the hardware changes, parameters can be
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Cost of the preconditioner is NOT included – deflation effect is clear
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FIG. 5. We plot the convergence history of Algorithms A-G versus fine matrix multiplies. This

includes the smoother cost, but not the cost of coarse corrections. Since the dimension of the coarse

grid operator changes between algorithms, this is not yet a direct comparison. However, since we

use deflated solves in the coarse space for Algorithms A,B, E, F and G, but not for Algorithms

C and D, the irreducible cost given this plot will bound the cost of Algorithm C and D relative

to that for the other algorithms. We see that Algorithms C and D take the most fine matrix

multiplies, even when the coarse space is (incorrectly) assumed to be free. Since Algorithms C,

D and E have only five dimensional coarse spaces, these algorithms would have intrinsically more

expensive coarse spaces even if they were deflated.

retuned to move algorithmic cost into the operations that are relatively more e�cient, and

unlike with standard Krylov solvers we do not typically end up with parameter free black

box algorithms.

For Algorithms C, D, and G the coarse space operations has unrepresentative cost, be-

cause there is no coarse level deflation in Algorithm C and D, and there is an ine�cient but

convenient implementation of the coarse operator in Algorithm F. With this caveat, Figure 7

plots the convergence history of Algorithms A-G versus time on a single node of the Summit
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Fine matrix multiples includes cost of smoothers and outer steps.
Ignores cost of coarse space solves.
Had to use higher order smoother for Boston method
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FIG. 6. We plot the convergence history of Algorithms A, B, F and G versus fine matrix multiplies.

This plots the same data as figure 5 with Algorithms C, D and E removed to expand the scale for

clarity.

computer. The runs use a single node and make use of four of the six Nvidia Volta GPU’s.

The calculation runs over high bandwidth NVlink for high performance intra-node commu-

nications which perhaps suppresses the overhead of the fine matrix somewhat. The relative

behaviour between multigrid and standard Krylov solvers would di↵er in a multi-node simu-

lation where interconnect bandwidth limits would likely a↵ect the fine matrix multiply more,

while the coarse grid operator is MPI latency bound, with MPI latency largely a software

limit.

Figure 7 and Figure 8 show the convergence of the set of algorithms with and without

zoom on the fastest. We obtain a three fold clocktime speed up over CGNR on the red-black

preconditioned system and a nine fold speed up over the unpreconditioned CGNR algorithm

for HDCR (Algorithms A and B). A modest speed up is obtained for hybrid Algorithm F.

These final plots have a significant caveat for Algorithms C and D, which su↵er from the

expense of the five dimensional coarse space, despite showing some deflation e↵ectiveness

when cost is measured solely by fine matrix multiplies. This is partly because a modest
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FIG. 7. We plot the convergence history of Algorithms A-G versus time on a single node of the

Summit computer. This include the entire cost of the algorithm, including coarse grid corrections,

and is a direct comparison. The software implementation of the coarse Grid solution, while opti-

mised, has not necessarily received as much e↵ort as the fine operator. There are some significant

caveats to comparing timings with undeflated algorithms in the case of Algorithms C, D and badly

implemented in the case of Algorithm F. This is explained in the body of this text.

blocking factor 24 was used for the coarsening with 24 vectors, while the large fifth dimension

is retained in the coarse space. However, we use deflated solves in the coarse space for

Algorithms A,B, E, F and G, but not for Algorithms C and D. We also do not use more

than two levels in the multigrid for Algorithms C and D. We replot the convergence vs time,

omitting Algorithms C and D, in figure 8, so that more detailed comparison of Algorithms

A, B, E, F and G may be made. Algorithm F is a three level extension to Algorithm E,

where the fifth dimension is removed in a second step of coarsening. This doubly coarsened

system is then deflated, but the gain is not su�cient to close with either HDCR Algorithms

A and B.

The implementation Algorithm G (HDCG) is very much suboptimal, since the coarse

operator is implemented by simply calling and projecting the fine operator. Algorithm
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Time: so far most successful with BNL methods A,B
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FIG. 8. We plot the convergence history of Algorithms A, B, E, F and G versus time on the a

single node of the Summit computer.

G, which used the fewest fine matrix multiplies, had a coarse operator implemented in an

ine�cient manner, using the fine matrix and projecting it, instead of implementing it as a

non-local stencil in the coarse space. Nevertheless, Algorithm G was remarkable competitive

due to it using the fewest (compulsory) fine matrix multiplies.

3. Setup costs

Minimal setup cost is important to the intended application of these algorithms: the

deflation of solutions in the Hybrid Monte Carlo and related algorithms. In Table XI we

display the setup costs for the 163 system with each of the algorithms studied above, and

the relevant timescale for comparison is the total solve time for the red-black preconditioned

CGNR algorithm. The setup cost can potentially be amortised across multiple determinant

factors and will be the subject of further study, however although the precise cross-over

point in terms of cost is potentially complicated it is clear that minimal setup algorithms

are ideal. As one would expect four dimensional coarsenings have a small setup cost, but the
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cost of the coarse space has an additional Ls factor. The area has promise but we have not

been able to make the most obvious approaches give a net gain. Overall the most promising

option to pursue are variants of the HDCR algorithm, and we will take these forward in the

next section to larger volumes and (near) physical quark masses.

C. Multigrid solver on physical point lattice

We have reoptimised the most successful of the algorithms studies on a larger system with

lighter quark masses. We used a single 483 ⇥ 96 Mobius domain wall fermion configuration

number 1000 from our mud = 0.00074 2+1 flavour Iwasaki gauge ensemble at � = 2.13[29]

with Ls = 24. The valence quark action was Ls = 24 but with the Shamir Domain Wall

action, due to the �5 Hermiticity constraint of the HDCR algorithm. This was therefore

non-unitary and had higher than physical e↵ective quark mass due to the increased residual

chiral symmetry breaking. However, this system still serves as a useful test of the algorithm

on larger volumes and lighter quark masses than with our 163 test system.

Table XII displays the timings for both red black preconditioned CGNR and also the

setup and solve time for HDCR. We can see that after tuning we obtained a set up time of

s, and solve time of s, and this is to be compared to the rbCGNR solution time of s. This

represents net speed up, even including setup costs, and is very encouraging, and perhaps

even a breakthrough in multigrid setup overheads.

In the Conclusions section VI we discuss the prospects and next steps for moving this

into a gain for HMC evolution.

VI. CONCLUSIONS

The main findings of this paper are as follows.

Domain wall Fermion multgrid: We have compared a number of di↵erent schemes

for domain wall Fermion multigrid algorithms and find that HDCR[2] so far is the most

promising direction, with both a significant speed up over red-black preconditioned conju-

gage gradients and low setup overhead.

Deflation: Full vector deflation in the coarsest space appears to be a general and sensible

step in multigrid algorithms, and was used in HDCG [1]. It can accelerate coarse space
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Physical point! 

Algorithm Coarse

Iterations

Outer

Iterations

Fine

Matmuls

Time Coarse

residual

Coarse

eigenvectors

CGNR - 33470 66940 1612s - -

red-black

CGNR

- 11436 22872 502s - -

H 440 76 201s 0.01 -

H 350 86 4218 195s 0.02 -

H 265 109 5232 263s 0.04 -

H s 0.02 128

H s 0.02 64

H s 0.02 32

TABLE XIII. We display the wall clock timing and matrix multiply count for HDCR on a physical

point ensemble, but with a non-unitary DWF action which was slighly above the physical quark

mass due to residual chiral symmetry breaking e↵ects. In this system HDCR was able to both

setup and solve the linear system with combined time faster than the rbCGNR algorithm. This

has been enabled by the fast setup algorithms introduced in this work.

Algorithm Coarse

Subspace

Coarse

operator

Solve Time

rbCGNR - - 502s

H 110s 12.5s 195s

H (RB CG coarse) 110s 12.5s 149s

F (RB CG coarse) 50s 12.5s 280s

TABLE XIV. We display the wall clock timing and matrix multiply count for HDCR on a physical

point ensemble, but with a non-unitary DWF action which was slighly above the physical quark

mass due to residual chiral symmetry breaking e↵ects. In this system HDCR was able to both

setup and solve the linear system with combined time faster than the rbCGNR algorithm. This

has been enabled by the fast setup algorithms introduced in this work.
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Can set up and solve twice to 10^-8 in 420s – faster than a single solve with the right baseline 



Reusing subspace set up:

Further, the full vector deflation may be either based on exact eigenvectors, obtained with

the polynomial preconditioned Lanczos algorithm in this work, or even from approximate

eigenvectors.

Fast setup multigrid: We have introduced a new scheme for multigrid setup based on

spectral filtering using Chebyshev polynomials. The recursive nature of these polynomials

allows multiple useful vectors to be obtained from a single initial random noise vector.

The method demonstrates substantially reduced setup cost. The aim of this method is to

improve the e↵ectiveness of multigrid algorithms in the gauge evolution algorithms such as

the Hybrid Monte Carlo algorithm[? ], the gluon field is changed after a single solution of

the Dirac operator (or in the case of multiple Hasenbusch determinant factors after a modest

number of solutions of related operators).

Current state of the art involves polyomial prediction of the deflation basis as the gauge

configuration is evolved [? ], but this prediction both violates reversibility and also mis-

tracks the evolution of the configuration requiring periodic recalculation or improvement of

the deflation basis vectors. The Metropolis algorithm requires reversibility, so convergence

to a tight stopping criterion is required. This is tight stopping condition is not required if a

reversible guess (such as a zero guess) is used, and the stopping condition for force evalua-

tion during molecular dynamics with Krylov solvers steps may be relaxed with reversibility

violated only by numerical rounding error, and not convergence stopping condition. One

might hope to reduce the setup cost of multigrid algorithms to the point where the setup

cost might be amortised in a single solution, or at very least across several Hasenbsuch

determinant ratio factors, whereupon the convergence tolerance might remain relaxed.

In this work we have achieved a significant step forward, where on our 483 volume we are

able to both setup and solve the HDCR algorithm faster than the convential red-black pre-

conditioned CG. The algorithm is restricted (currently) to the standard Shamir formulation

of domain wall Fermions, but we believe this is a significant step towards a genuine speed

up for HMC.

The Fermion determinant in domain wall Fermions is that of a ratio of the two flavour

and Pauli Villars operators,

det
M †

l Ml

M †
PVMPV
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and this is normally factored as several intermediate Hasenbusch terms such as,

det
M(ml)†M(ml)

M(m1)†M(m1)
.det

M(m1)†M(m1)

M(m2)†M(m2)
.det

M(m2)†M(m2)

M(mPV )†M(mPV )

The low mode spaces for the denominators in these determinant ratios do not coincide due

to the nature of the domain wall Fermion mass term. However these intermediate fragments

are unphysical, and alternate forms can be considered. A frequency splitting scheme that is

based on an additive shift is also possible,

det
M(ml)†M(ml)

M(ml)†M(ml) +�1
.det

M(ml)†M(ml) +�1

M(ml)†M(ml) +�2
.det

M(ml)†M(ml) +�2

M(mPV )†M(mPV )
,

and may allow share the multigrid setup across multiple inversions.

We note that the current gain is not yet su�cient to speed up HMC in practice without

setup costs being amortised, either by subspace prediction or determinant splitting because

a solver for the non-squared system must be run twice to calculate the forces from a two

flavour determinant.

Four dimensional coarsening: a modest 24 blocking cell and a significant fifth dimen-

sion extent was required with four dimensional coarsening based on the DW operator. While

the deflation provided is in principle e↵ective, the coarse space dimension proves a cost bar-

rier that we were not able to address su�ciently well to establish an e↵ective method in

four dimensional QCD. For the MG-PV algorithm, the BiCGSTAB algorithm as smoother

proved to be significantly less e↵ective than the GCR algorithm. For the MG-M †M ap-

proach, a hybrid coarsening scheme, stepping through one level of Wilson operator based

coarsening and a second level of five dimensional coarsening baased on the Hdwf operator

substantially reduced the cost.

While we have not invested the e↵ort to deflate the non-Hermitian MG-PV algorithm,

our attempts at three level and reduced coarse Ls have not so far been encouraging, and

comparison with the MG-M †M algorithm and the hybrid-M †M suggests that additional

good ideas are required to make these classes of approach successful. A singular value

decomposition is required to handle the non-normal case, which is certainly possible but is

a direction we have not (yet) taken.

Further study is a good idea, since the setup on the fine space is proportinal to the four

dimensional lattice volume, rather than five dimensional system, which intriguingly serves to

remove or reduce the extra cost of chiral fermions. A hybrid scheme has been demonstrated
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We note that the current gain is not yet su�cient to speed up HMC in practice without

setup costs being amortised, either by subspace prediction or determinant splitting because

a solver for the non-squared system must be run twice to calculate the forces from a two

flavour determinant.

Four dimensional coarsening: a modest 24 blocking cell and a significant fifth dimen-

sion extent was required with four dimensional coarsening based on the DW operator. While

the deflation provided is in principle e↵ective, the coarse space dimension proves a cost bar-

rier that we were not able to address su�ciently well to establish an e↵ective method in

four dimensional QCD. For the MG-PV algorithm, the BiCGSTAB algorithm as smoother

proved to be significantly less e↵ective than the GCR algorithm. For the MG-M †M ap-

proach, a hybrid coarsening scheme, stepping through one level of Wilson operator based

coarsening and a second level of five dimensional coarsening baased on the Hdwf operator

substantially reduced the cost.

While we have not invested the e↵ort to deflate the non-Hermitian MG-PV algorithm,

our attempts at three level and reduced coarse Ls have not so far been encouraging, and

comparison with the MG-M †M algorithm and the hybrid-M †M suggests that additional

good ideas are required to make these classes of approach successful. A singular value

decomposition is required to handle the non-normal case, which is certainly possible but is

a direction we have not (yet) taken.

Further study is a good idea, since the setup on the fine space is proportinal to the four

dimensional lattice volume, rather than five dimensional system, which intriguingly serves to

remove or reduce the extra cost of chiral fermions. A hybrid scheme has been demonstrated
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• (multiple) new DWF multigrid methods
• Dw coarsening remains intriguing 
• Hdwf coarsening so far wins – Boston were a big distraction!

• Demonstrated cross over to modest net gain in HMC application
• Compared to the correct baseline!

• Possible to use with Hasenbusch scheme

Conclusions


